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Abstract

Exponential family statistical distributions, including the well-known Normal, Binomial,
Poisson, and exponential distributions, are overwhelmingly used in data analysis. In
the presence of covariates, an exponential family distributional assumption for the
response random variables results in a generalized linear model. However, it is rarely5

ensured that the parameters of the assumed distributions are stable through the
entire duration of data collection process. A failure of stability leads to nonsmoothness
and nonlinearity in the physical processes that drive the data under. In this paper,
we propose testing for stability of parameters of exponential family distributions and
generalized linear models. A rejection of the hypothesis of stable parameters leads10

to change detection. We derive the related likelihood ratio test statistic. We compare
the performance of this test statistic to the popular Normal distributional assumption
dependent cumulative sum (Gaussian-CUSUM) statistic in change detection problems.
We study Atlantic tropical storms using the techniques developed here, to understand
whether the nature of these tropical storms has remained stable over the last few15

decades.

1 Introduction

One important way in which nonlinear structures may be present in data related to
many physical and natural phenomena is by structural breaks and changes. Generally,
elicitation of the time and nature of such breaks with statistical guarantees involves20

change detection techniques like the cumulative sum (CUSUM), or the exponentially
weighted moving average (EWMA).

The standard framework for applying such change detection techniques requires
assuming that the order in which the sampled observations arrive is known, with the
question of interest being whether the data generating process has remained stable25

over time. The observations are assumed to follow a known Gaussian distribution, and
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are monitored for a potential change to a different, but still known, Gaussian distribution.
Statistical guarantees are typically expressed in terms of expected run length, i.e., how
long it takes on average for a true change to be detected, when there is a control for
the expected length of time before false signaling occurs.

These Normality-based sequential monitoring and stability detection techniques5

originated from industrial process control (Page, 1954), although they have far ranging
applications nowadays. Examples of such applications are in the fields of health care
monitoring (Steiner et al., 1999), detection of genetic mutation (Krawczak et al., 1999),
credit card and financial fraud detection (Bolton and Hand, 2002), and insider trading in
stock markets (Meulbroek, 1992), detect jamming attacks in wireless networks (Chen10

et al., 2007).
Note that in many modern applications, the assumption of Normality is not tenable.

In this paper, we discuss change detection in general exponential family, and in
regression models including generalized linear models like logistic regression and
log-linear regression. Our main finding in this paper is that while at a mathematical15

level, the general form of the CUSUM statistic remains the same as that of the
traditional, Normality-based CUSUM statistic, the component terms that make up
the general form changes. We present several mathematical results concerning the
different kinds of CUSUM statistics that may result, depending on the probabilistic
structure under consideration. A natural question here is on the performance of20

the Normality-based CUSUM statistic, when the probability models do not satisfy
the Gaussian assumptions. We study this issue, and present mathematical results,
simulation studies and discussions about when and how the Gaussian-CUSUM may
yield high quality results. Finally, we discuss properties of Atlantic tropical storms, and
use the techniques developed in the rest of this paper to study structural changes in25

the fundamental physical properties for which we have data records for such storms.
In order to generalize the scope of statistical change detection tools, in this paper we

propose a variant of the sequential industrial monitoring framework, by considering
the stability of the data generation process as a problem of detecting the time of
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the distributional change. That is, we conduct a hypothesis test, and under the null
hypothesis, the data generation process remains stable through the entire sampling
time t = 1, . . . ,n. Under the alternative hypothesis, the distribution of the individual
observations remain stable up to an unknown point of time τ ≤ n and then it changes
to another distribution. There are several advantages to this testing for distributional5

stability (TDS hereafter) approach. First, the sequential process monitoring statistics
like CUSUM are obtained as a special case, so there is no loss of generality. Second,
the TDS approach is applicable to non-sequential framework, so it may be applied to
a finite sample data record also. Third, the TDS approach is applicable in a much
broader framework compared to just temporally ordered observations, and can be10

generalized to any kind of partition of the data. Fourth, multiple changes of distribution
of the observations is also easily incorporated in the TDS framework. The two
generalizations, that of extending TDS to any partitioning of the data and that of using
multiple change times, can be easily visualized in this hypothesis testing framework, but
we do not pursue them here. However, we briefly comment on these generalizations in15

Sect. 3 below. We call the proposed testing procedure the exponential family CUSUM
(or EF-CUSUM in short), while the statistic obtained under Gaussian framework is
called normal-CUSUM or Gaussian-CUSUM.

Simulation studies show that in most situations, EF-CUSUM method performs better
than Gaussian-CUSUM. The EF-CUSUM has a shorter average run length, smaller20

variation of run length and shorter maximum run length compared with Gaussian-
CUSUM. Moreover, smaller shifts can be detected more quickly by EF-CUSUM than
by Gaussian-CUSUM, which is a big advantage of using EF-CUSUM. Under some
circumstances the Gaussian-CUSUM approximates the EF-CUSUM well, we discuss
this issue below. It is also important to note that whether the change point τ is at25

the beginning, in the middle or at the end, the EF-CUSUM generally outperforms the
Gaussian-CUSUM, so the unknown parameter τ plays little role in our analysis. Finally,
in the case of a large parameter shift, the exponential family CUSUM and the Gaussian-
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CUSUM perform similarly. This is not unusual, and even visual and ad hoc techniques
suffice for many cases of large changes.

We also extend our study to that of parameter change in the generalized linear
model. In this context, Brown et al. (1975), and Jandhyala and MacNeill (1991)
discussed general linear model, Lee et al. (2004), Chihwa and Ross (1995), and5

Ploberger et al. (1989) focused on detecting linear model with different types of error
terms. In this paper we propose methodology for detecting change in regression
coefficients in the generalized linear model setting and the EF-CUSUM scheme
associated with it.

Our case study for illustrating our instability and change detection techniques is10

based on Atlantic tropical storm data. There are several studies in recent times on
whether, and how, the properties of these storms have changed with climate change.
Note that such storms can do immense harm to human and other living beings and
to property, consequently a change in their patterns is of interest. Apart from being
of current interest, the presence of some amount of evidence for change in the15

literature is helpful for evaluating whether our proposed methods can detect known
instabilities. We study the yearly number of such storms, as well as the joint relationship
between pressure and windspeed. We detect changes compatible with known facts.
Interestingly, we find that although windspeeds and central pressure values of Atlantic
hurricanes have changed, they have changed in-sync, that is, their mutual relationship20

has remained stable over time. This lends credence that our methodology might be
able to detect true changes and discard false signals well, since large scale energy
balance relationships (as that between pressure and windspeed) are not expected to
change.

The paper goes as follows: Section 2 is literature review. Section 3 deals with EF-25

CUSUM statistic derivation. Multivariate Gaussian-CUSUM is discussed as well, with
covariance matrix either singular or positive definite. A few examples are given as to
how to derive CUSUM statistic, and Tables 1 and 2 are provided for the convenience of
readers. Section 4 talks about change detection in the generalized linear model setting.
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Section 5 contains simulation studies, the results are summarized in Tables 3–5 and
Fig. 1. The data analysis for Atlantic tropical storms is provided in section 6. Conclusion
and future work go into Sect. 7.

2 Literature review

In this section we provide a partial list of techniques for change detection. As mentioned5

earlier, some of these originated in industrial quality context, and related methods
include Shewhart control charts Shewhart (1931), EWMA control charts Roberts
(1966) and CUSUM Page (1954).

In the context of the CUSUM statistic, which originated from Page (1954) and Page
(1955), Lorden (1971) proposed an asymptotic optimality using the minimax criterion.10

Later, Moustakides (1986) also established that under Lorden’s criterion, when the data
is independently and identically distributed with known distributions before and after the
change, the CUSUM procedure was indeed optimal. Additionally, Ritov (1990) showed
that CUSUM was Bayesian optimal under Lorden’s measure, and Pollak (1987) derived
asymptotic expression for average run length.15

The CUSUM technique has been extended to better suit practical needs, including
Shu et al. (2010) on adaptive CUSUM, Hawkins (1992) on robust average run length
with Winsorization, Liu et al. (2006) proposed transformation of exponential data into
approximately normal distribution and compared transformed CUSUM with existing
CUSUM procedures. Also, Yashchin (1993) proposed transforming serially correlated20

observations (such as ARMA) into independent, identically distributed sequences while
keeping average run length roughly the same. In other directions, Lucas and Saccucci
(1990) compared the average run length properties of EWMA with CUSUM, Atienza et
al. (2000) proved that the CUSUM scheme that utilized BCUSUM mask was uniformly
most powerful and compared it with other existing CUSUM procedures, MacEachern25

et al. (2007) developed robust CUSUM by modifying the likelihood function, Albers
and Kallenberg (2009) proposed CUMIN charts for grouped data and compared
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CUMIN with CUSUM and Shewhart charts, Chatterjee and Qiu (2009) proposed
CUSUM control charts with control limits estimated using bootstrapping when the
distribution was unknown, Steiner et al. (1999) used simultaneous CUSUM control
charts to monitor correlated bivariate outcomes in the field of medical research, Crosier
(1988) proposed vector CUSUM and Hotelling T 2 based CUSUM when dealing with5

multivariate case and compared them to Shewhart scheme, Lucas (1982) proposed
Shewhart-CUSUM scheme to draw advantages of both methods for quick detection
of mean change in the normal distribution setting, and Morais and Pacheco (2006)
extended the approach to binomial data.

Some researchers have treated special cases in the EF-CUSUM family, including10

Hawkins and Olwell (1997) on detecting known location and shape change in inverse
gamma distribution, Hawkins and Zamba (2005) on change point detection in unknown
mean and variance for normal distribution, Watkins et al. (2008) used negative
binomial CUSUM to study outbreaks of Ross River virus disease and compared it
to Early Aberration Reporting System (EARS) CUSUM algorithms, Wu et al. (2008)15

studied large shifts in fraction non-conforming in Poisson CUSUM chart, Lucas (1985)
improved the Poisson CUSUM with FIR and introduced two-in-a-row rule to robust
CUSUM. Khan (1979) showed optimality of CUSUM for exponential distribution by
calculating ARL using Wald’s approximation. Healy (1987) discussed shift in mean and
covariance for multivariate normal distribution using CUSUM, Alwan (2000) proposed20

transformation to normality to deal with EF-CUSUM chart, Severo and Gama (2010)
discussed using Kalman Filter and CUSUM to detect residual mean and variance in the
regression model, and Qiu and Hawkins (2001) used rank-based CUSUM procedure
to deal with multivariate measurements without normality assumption.

3 Distributional stability in exponential families25

Let the data be the random sample {X1, . . . ,Xn}, where we know X1 is observed
first, then X2 is observed, and so on. We assume that X1, . . . ,Xτ are identically and
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independently distributed following an exponential family distribution with probability
density or mass function given by

p (x;θ,δ) = exp
{
a(φ)−1 (xθ−b(θ))+c(x,φ)

}
.

Here the parameters are θ, which is of the same dimensionality as each of the data-5

points, and φ.
We assume that Xτ+1, . . . are identically and independently distributed from another

exponential family distribution, with probability density function given by

p (x;θ+δ1,φ+δ2) = exp
{
a (φ+δ2)−1 (x (θ+δ1)−b (θ+δ1))+c (x,φ+δ2)

}
.

10

Here τ is a fixed but unknown parameter denoting the time of change from one
distribution to another, and 0 < τ <∞. In the testing for distributional stability (TDS)
framework we adopt in this paper, our interest is in testing the null hypothesis H0 : τ ≥ n
against the alternative hypothesis H1 : τ < n. We consider all parameter values, other
than τ as known constants.15

Assuming some, or all, of these parameters as unknown is an easy extension but
requires additional technical conditions and assumptions, and we do not consider that
case in this paper. Note that the time-ordering of the observations is not an integral
part to our methodology. Also, multiple change-points may be allowed. For the former,
we would assume that there is some permutation of the data, say Xσ1

, . . . ,Xσn such20

that Xσ1
, . . . ,Xστ are independent and identically distributed with some exponential

family distribution with parameters θ and φ, while Xστ+1
, . . . independent and identically

distributed with the same distribution with a different set of parameter values. Also,
multiple change-points τ1, . . . ,τk can be easily accommodated in the above framework,
and both the null and alternative hypothesis made more complex. In other words, we25

can extend our study to the case where, for some permutation of the indices, the
data may be partitioned into k0 segments under the null and k1 segments under the
alternative. Here, each segment of data is a set of independent, identically distributed

378

http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/1/371/2014/npgd-1-371-2014-print.pdf
http://www.nonlin-processes-geophys-discuss.net/1/371/2014/npgd-1-371-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


NPGD
1, 371–401, 2014

Instability detection

Y. Lu and S. Chatterjee

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

exponential family random variables with its own distinct set of parameters. Our current
problem may be thought of as the special case where σi = i for i = 1, . . . ,n, k0 = 1, and
k1 = 2. Extensions like those described above may lead to new approaches for solving
several problems in applied statistics. However, in the interest of clarity of presentation,
and to keep this paper at a reasonable length, we do not pursue such extensions here.5

In our first result below, we obtain the test statistic for the hypothesis test described
above. We adopt the convention that

∑b
i=aYi = 0 whenever a > b, for any sequence of

(possibly random) reals {Yi}.

Theorem 3.1. Let10

Yi=a (φ+δ2)−1 (Xi (θ+δ1)−b (θ+δ1))+c (Xi ,φ+δ2)−a(φ)−1 (Xiθ−b(θ))−c (Xi ,φ) ,

for i = 1, . . . ,n, and further define Sk =
∑k

i=1Yi , adopting the convention that S0 = 0.
The likelihood ratio test statistic for testing the null hypothesis H0 : τ ≥ n against

the alternative hypothesis H1 : τ < n is given by Tn = Sn −min0≤k<nSk , and the null15

hypothesis is rejected if Tn ≥ L for some constant L.
We omit the proof of this and several other Theorems in the interest of brevity. These

proofs are available from the authors.
Note that the test statistic Tn may be written recursively as Tn = max{0,Tn−1 + Yn},

with T0 = 0. This form is reminiscent of the the celebrated CUSUM statistic. In view20

of this, we call Tn the exponential family CUSUM statistic. We obtain the classical
CUSUM statistic as a special case in Corollary 3 below.

Remark 3.1
Recall that we reject the null hypothesis H0 : τ ≥ n if Tn ≥ L for some L. The standard25

method for choosing L in the hypothesis testing paradigm is by controlling the
probability of Type-1 error at some pre-determined level α. However, in the sequential
statistics literature, the comparable technique is to control the expectation of the
run length under the null hypothesis. The run length R is defined as the number of
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observations gathered before a decision is reached on the rejection or acceptance of
the null hypothesis. In the present framework, we have R = inf{n : Sn −min0≤k<nSk =
Tn ≥ L}. The value of L may be obtained by fixing the value of ER(= ARL) assuming
τ =∞, at a pre-determined value ARL0. The notation ARL stands for average run
length. For ease in comparison with existing procedures for change detection, we will5

report expected run length Emax(R−τ,0) under the alternative as a measure of power,
the way it is done in sequential statistics literature. The probability of Type-1 (Type-2)
error and the expected run length under the null (alternative) hypothesis are related,
though the relation is generally not easy to obtain.

Note that Tn ≥ 0 almost surely, hence a non-trivial test is obtained only when L10

is strictly positive. Our next result shows that this relation is fairly easy to ensure in
practice.

Theorem 3.2 Eτ=∞R (= ARL0) ≥ 1 if and only if the critical value L is positive.
15

PROOF OF THEOREM 3 The necessity part : if L ≤ 0, since R = inf{n : Sn−min0≤k<nSk ≥
L}, we have S0 −min0≤k<0Sk = 0 ≥ L. Hence we have R = 0 almost surely, and
therefore Eτ=∞(R) = 0, which is contradictory to ARL0 ≥ 1.

The sufficiency part : if L > 0, then R cannot be zero because S0−min0≤k<0Sk = 0 < L,20

hence R is at least 1. Therefore ARL0 ≥ 1.
We now state some special cases of Theorem 3, which are of interest. Our first such

result deals with the case where the observations are Normally distributed. We use

the notation
i.i.d.
= for independent and identically distributed.

25

Corollary 3.1

Suppose X1, . . . ,Xτ
i.i.d.
= N(µ,σ2

1 ) and Xτ+1, . . . ,Xn
i.i.d.
= N

(
µ+δ1,σ2

2

)
. For testing the null

hypothesis H0 : τ ≥ n against the alternative H1 : 0 ≤ τ < n, the likelihood ratio statistic
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is given by Cn = Sn −min0≤k<nSk , where Sk =
∑k

i=1Yi and

Yi = log(σ1)+
1
2
σ−2

1 (Xi −µ)2 − log(σ2)− 1
2
σ−2

2 (Xi −µ−δ1)2 .

We omit the proof of this Corollary, which follows easily from Theorem 3. In the very
special case where σ1 = σ2 = 1,µ = 0, we obtain Yi =

(
Xi −δ/2

)
, and hence obtain5

Sn −min0≤k<nSk = Cn = max{0,Cn−1 +Xi −δ/2}, with C0 = 0. This expression is that
of the classical Gaussian-CUSUM, where the factor δ/2 is often called the allowance
constant.

The statistic Cn defined as Cn = max{0,Cn−1 +Xi −δ/2} (with C0 = 0) is often used
as a default statistic for change detection. Our result above shows that this statistic10

may also be obtained in a non-sequential framework, however, the assumption of
Normal distribution seems unavoidable. Since Cn is used for change detection in
non-Normal data also, it is of interest to know under what circumstance it may obtain
reasonable accuracy and precision with change detection. Our next theorem describes
the conditions under which using Cn as a statistic may be a reasonable procedure.15

Theorem 3.3
Consider the framework of Theorem 3. In addition, assume that the third derivative of
b(·) at θ0 is zero, i.e., b′′′(θ0) = 0, that δ1 is small and δ2 = 0.

Under these assumptions, the difference between the Normality-based CUSUM Cn20

and the exponential family CUSUM Tn is as follows: |Cn − Tn| = o(nδ1).

REMARK In the case of binomial distribution with parameter p, the natural parameter

is θ = log
(

(1−p)−1p
)

, and b (θ) = n log
(
1+exp{θ}

)
, φ is taken as a constant. Also

b′′′(θ) =
(
1+exp{θ}

)−4 {nexp{θ}
(
1+exp{θ}

)(
1−exp{θ}

)
}, b′′′(θ0) = 0 iff θ0 = 0. In25

that case, p = 1
2 . To conclude, when p = 1

2 , a change from p→ p+δ1 using Gaussian-
CUSUM ỹ and exponential family CUSUM y yield similar performance in the sense
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that |ỹ − y | = o(δ1).

Corollary 3.2
For the same detection problem as above, under the condition of b′′′(θ0) = b′′′′(θ0) = 0,
δ1 is small and δ2 = 0, we get an even stronger result |ỹ − y | = o(δ2

1 ).5

Example 3.0.1
Change from Np(µ,Σ1) to Np(µ+δ,Σ2)

The CUSUM for multivariate normal distribution is somewhat more complicated and
therefore we divide this problem into the following cases based on the nature of the10

variance-covariance matrix. In all the cases listed below, the test statistic is Cn = Sn −
min0≤k<nSk , where Sk =

∑k
i=1Yi and Yi depends from one case to another.

1. Σ1 = Σ2 = Σ, where Σ is positive definite.

Based on the following density function: f (x|µ,Σ) = (2π)−
p
2 |Σ|−

1
2 exp{−1

2 (x−
µ)′Σ−1(x−µ)} it is straightforward to derive the CUSUM statistic based on Yi =15

(xi −µ− 1
2δ)′Σ−1δ. If we let p = 1, we are back to the univariate normal situation.

2. Σ1 = Σ2 = Σ, where Σ is a singular.

Assume rank (Σ) = r ,r < p. By linear algebra, there exists an orthogonal matrix

Qp∗p, such that QΣQ′ = Λ, where Λ is



λ1
.
.
λr

0
.
.
0


p∗p

.
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Here λi > 0, i = 1,2...r . So Z =QX ∼ Np(Qµ,Λ). Let P be the matrix
1

.
.
1


r∗p

.

Let K = P Z ∼ Nr (P Qµ,Λ̃), where Λ̃ is


λ1

.
.
λr


r∗r

. So the problem is reduced

to a change of Nr (P Qµ, Σ̃) to Nr (P Q(µ+δ), Σ̃), and we are back to case 1. The
CUSUM statistic is based on Yi = (xi −µ− 1

2δ)′(P Q)′Σ̃−1P Qδ.5

3. Σ1 6= Σ2, where Σ1, Σ2 are both positive definite.

Following previous discussion, the CUSUM statistic is based on Yi =
1
2 log(|Σ1|

−1|Σ2|)+ 1
2 (xi −µ−δ)′Σ−1

2 (xi −µ−δ)− 1
2 (xi −µ)′Σ−1

1 (xi −µ).

4. Σ1 6= Σ2, where Σ1 and Σ2 are both singular.

Based on discussion of case 2, our CUSUM statistic is based on Yi = ( r2
2 −10

r1
2 ) log(2π)+ 1

2 log(|Λ̃1|
−1|Λ̃2|)− 1

2 (P1Q1(xi −µ))′Λ̃−1
1 (P1Q1(xi −µ))+ 1

2 (P2Q2(xi −µ−
δ))′Λ̃−1

2 (P2Q2(xi −µ−δ)). Here P1,Q1,P2,Q2 are such that P1Q1Σ1Q
′
1P

′
1 = Λ̃1,

P2Q2Σ2Q
′
2P

′
2 = Λ̃2, and rank ( Λ̃1 ) = rank ( Σ1), rank( Λ̃2 ) = rank ( Σ2 ), Λ̃1,

Λ̃2 are r1 × r1 and r2 × r2 diagonal matrix.

5. Σ1 6= Σ2, where Σ1 is positive definite, Σ2 is singular.15

In this case we have Yi =
r2−p

2 log(2π)+ 1
2 log(|Λ̃1|

−1|Λ̃2|)+ 1
2 (P2Q2(xi −µ−

δ))′Λ̃−1
2 (P2Q2(xi −µ−δ))

− 1
2 (xi −µ)Σ−1

1 (xi −µ), where P2Q2Σ2Q
′
2P

′
2 = Λ̃2, rank ( Λ̃2 ) = rank ( Σ2), Λ̃2 is

r2 × r2 diagonal matrix.
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4 Generalized linear model and CUSUM

In this section, we consider data of the form (y1,x1), . . . , (yn,xn). Here, the
yi ’s are the responses, and the xi ’s are covariates that are considered to
be fixed constant vectors. We assume that y ′

i s come from the distribution
p(yi |θi ) = exp{a(φ)−1(yiθi−b(θi ))+c(yi ,φ)}, where θi = x′

iβ is the canonical parameter5

under stable distributional regime and a(φ) > 0 is a dispersion parameter. Our main
result below generalizes the main result of the previous section, and presents change
detection test statistic for generalized linear models:

Theorem 4.110

Assume that (y1,x1), . . . , (yτ,xτ), the true model is θi = x′
iβ, and for

(yτ+1,xτ+1), . . . , (yn,xn), the true model is θi = x′
i (β+δ), where β, δ is

known. For the hypothesis testing H0 : τ ≥ n vs. H1 : 0 ≤ τ < n. If we denote
zi = yix

′
iδ −b(x′

i (β+δ))+b(x′
iβ) and Sk =

∑k
i=1 zi , then the rejection region is

Sn −min0≤k<nSk ≥ L.15

5 Simulation study

In this section, we discuss a simulation study on the change of parameter(s) for
binomial, exponential, gamma and poisson distributions, and compare the EF-CUSUM
statistic with the Gaussian-CUSUM statistic, under the constraint that the mean and
the standard deviation of both distributions are equal. Based on the exponential family20

density f (x;θ,φ) = exp{a(φ)−1(xθ−b(θ))+c(x,φ)}, it is easy to calculate E (X ) =
b′(θ), and var(X ) = b′′(θ)a(φ). When there is change in parameter from θ to θ+
δ1 and from φ to φ+δ2, we have E (X ) = b′(θ+δ1) and var(X ) = b′′(θ+δ1)a(φ+
δ2). So the corresponding Gaussian assumption-based setting is a change from
N(b′(θ),b′′(θ)a(φ)) to N(b′(θ+δ1),b′′(θ+δ1)a(φ+δ2)).25
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The simulation procedure can be described as follows: first, we control false alarms

by carefully choosing L under the null distribution. We simulate {xn}
T=2000
n=1

i.i.d.
= f (x|θ) for

2500 times. Here T is fixed at 2000 for illustration. The density f (x|θ) is a distribution
belonging to the appropriate exponential family. Define R = inf{i : Si −min0≤k<i Sk ≥ L},
where Sk =

∑k
i=1 yk is EF-CUSUM statistic as we derived. For a fixed L, and for each5

simulation, we can compute a value of R. Its expectation E (R) can be computed based
on these 2500 simulations. Fixing ARL0 = 200, we obtain L such that |E0(R)−200|

200 is
minimized. Since E0(R) is an increasing function of L, with values ranging from 0 to
∞, such an L exists, and is unique.

Second, we compute E ((R − τ)+) under the alternative distribution. Let τ be an10

unknown parameter. Again we simulate x1, . . . ,xτ
i.i.d.
= f (x|θ) and xτ+1, . . . ,xT

i.i.d.
= f (x|θ+

δ) for 2500 times, where δ is known. For each τ = 0,1, . . . ,100, use the L in the first
step and compute R for 2500 times to get the mean, median, standard deviation,
and maximum of (R(τ)). Finally, we repeat the same procedure for the normal
case, compute E1(R(τ)) (and other summary statistics) for the Gaussian-CUSUM and15

compare it with E1(R(τ)) for the exponential family CUSUM.
From the simulation results in Tables 3–5 and Fig. 1, one key finding is that in most

cases, EF-CUSUM statistic performs better than Gaussian-CUSUM statistic except
for one occasion when the underlying distribution is exponential distribution. Here
performance is based on the mean of the run length after the change time τ until a20

signal occurs. Also note that for small shift in parameter, exponential CUSUM has a
considerable advantage over the Gaussian-CUSUM, while for large shift in parameter,
EF-CUSUM still works better than Gaussian-CUSUM, but not significantly different.

We also discover that E1(R(τ)) does not vary a lot with τ changing from 0 to 100
for a particular distribution in the exponential family. Particularly, for τ close to 0 or25

close to 100, E1(R(τ)) is still quite stable. In the table, we showed the E1(R(99)) as a
representative of the performance for the statistic. In addition, the median, standard
deviation and maximum of average run length tell the same story as the mean.
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6 Hurricane data analysis

We now discuss a case study of Atlantic tropical storms, for which data is available for
every six hours from its inception till finish. For each storm, the following information
is recorded: date and time, hurricane identity, hurricane name, position in latitude and
longitude, maximum sustained winds in knots, and central pressure in millibars.5

We present our results from three studies on Atlantic hurricanes here. Each of these
studies are carried out on two data sets: a longer series from 1851 to 2008 and a
shorter series from 1951 to 2008. The expectation-maximization algorithm was used for
missing data segments in the longer series when required, this problem does not arise
in the shorter series. Please see Fig. 2 for time series plots of the data we consider10

here.
First, we consider the problem of testing for distributional stability for the yearly

number of hurricanes between 1851 and 2008. This yearly data is modeled as
Poisson(µ̂), and a potential change to Poisson(µ̂+δ) is studied. We assume that
any potential change point occurred after 1900, and use the data previous to15

it for estimating parameters. We estimate µ̂ = 7.54, and fix δ = cσ̂, where c is
predetermined as 1

4 , 1
2 and 1, and σ̂ = 2.75 is the estimated standard deviation.

Note that σ ≈ µ
1
2 because for the Poisson distribution, the mean equals the variance.

Then we create the Poisson CUSUM statistic as given in Table 1. We get L based
on E0(R) = 200, and search for the first n that makes Sn −min0≤k<nSk ≥ L with the20

hurricane data.
In view of the fact that the data from the 19th century and the first half of

the 20th century may not be entirely reliable, we repeated the above analysis
on detecting change for the Atlantic tropical storms from year 1951–2008. We
assume that the potential change could only occur after 1970. For detecting potential25

change Poisson(µ̂) to Poisson(µ̂+δ), we now have µ̂ = 9.8, and δ = cσ̂, where c is
predetermined as 1

4 , 1
2 and 1, and σ̂ = 2.97.
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The second study has two parts. For the data from 1851-2008, we model the
maximum sustained winds and maximum central pressure as N2(µ̂, Σ̂), and study
potential change to N2(µ̂+δ, Σ̂). We estimate the mean µ̂ and variance-covariance

matrix Σ̂ based on the first 50 observations. Here µ̂ =
(

104.8
982.99

)
, and Σ̂ =

(
ˆσ11 ˆσ12
ˆσ21 ˆσ22

)
=
(

199.96 −20.66
−20.66 367.56

)
. Let δ =

(
c ˆσ11
c ˆσ22

)
, where c is predetermined as 1

4 , 1
2 and 1.5

In a variation of the second study, we consider maximum sustained wind speed and
minimum central pressure as N2(µ̂, Σ̂) and study potential change to N2(µ̂+δ, Σ̂). Here

µ̂ =
(

129.5
937.6

)
, and Σ̂ =

(
ˆσ11 ˆσ12
ˆσ21 ˆσ22

)
=
(

376.05 −220.47
−220.47 237.41

)
. Let δ =

(
c ˆσ11
c ˆσ22

)
, where c is

predetermined as 1
4 , 1

2 and 1.
The results are summarized in Tables 6 and 7. We discover that the number of10

hurricanes had a significant increase around year 1933–1936, and the strength of the
hurricanes had a sharp increase around the year 1923–1924. This is consistent with
the historical records. In history, the 1924 hurricane Cuba was the earliest officially
classified Category 5 Atlantic hurricane on the Saffir-Simpson scale, and it became
the strongest hurricane on record to hit the country; 1928 Okeechobee hurricane15

was the second recorded hurricane to reach Category 5 status on the Saffir-Simpson
Hurricane Scale in the Atlantic basin after the 1924 Cuba hurricane. The 1933 Atlantic
hurricane season was the second most active Atlantic hurricane season on record
with 21 storms; The 1936 season was fairly active, with 17 tropical cyclones including
a tropical depression. From the analysis of the shorter series, we detect that the20

year 2000–2001 saw an increase in the number of hurricanes. According to National
Hurricane Center, the 2001 Atlantic hurricane season produced 17 tropical storms and
hurricanes.

In the third study, we consider the relationship between the number of hurricanes Y ,
the maximum sustained winds X1 and maximum (minimum) central pressure for data25
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between 1851 and 2008 (1951–2008) X2. We model Y as Poisson(λ), where θ = logλ,
p(y ,θ) = exp{yθ−eθ − logy !} and use the canonical link θ = (1,X )′β.

For the 1851–2008 data, we take the first 50 observations, and get β̂ =
(−4.99,0.01,0.006)′. We also estimate the bivariate mean and covariance as µ̂ =

(104.8,982.99)′ and Σ̂ =
(

199.96 −20.66
−20.66 367.56

)
. Secondly, we select δ = cβ̂, where c =5

1
4 , 1

2 ,1. Next we search for L, assuming ARL0 = 200. To implement this, we simulate the
bivariate series X using µ̂ and Σ̂. Based on equation log(λ̂) = (1,X )′β̂, we get λ̂, and
we can simulate Y from Poisson ( λ̂). Construct the CUSUM statistic and the stopping
rule Sn −min0≤k<nSk ≥ L to satisfy ARL0 = 200. Finally, we fit the stopping rule to the
real data and discover the signal. Results shows that there is no significant change in10

terms of β, which means the way how the maximum sustained winds and maximum
central pressure of a hurricane relates to the number of hurricanes has not changed
over the past 158 years.

For the 1951–2008 data, we take the first 20 observations, and get β̂ =
(3.08,0.003,−0.0016)′. We also estimate the bivariate mean and covariance as µ̂ =15 (

129.5
937.6

)
, and Σ̂ =

(
376.05 −220.47
−220.47 237.41

)
. Secondly, we select δ = cβ̂, where c = 1

4 , 1
2 ,

1. Results shows that there is no significant change in terms of β, which means the way
how the maximum sustained winds and minimum central pressure of a hurricane relate
to the number of hurricanes has not changed over the past 58 years. Thus, the third
part of our study shows broad physical relations between windspeeds and pressures20

have not changed, which is to be expected.

7 Conclusion and future work

The exponential family CUSUM generally performs better than the Gaussian-CUSUM.
In practice, in situations where the data do not follow normal distribution, we
should consider the appropriate distribution for modeling the data and choose the25
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corresponding CUSUM statistic to effectively detect the change in parameter(s) if there
is any. Further details for the mathematical proofs, simulation studies, and our analysis
of Atlantic tropical storms record are available from the authors.

In general, optimality results for our proposed methods should follow along lines
similar to those established by Moustakides (1986) and related works, but this requires5

a separate proof. There are other situations of interest in geophysical studies where an
exponential family model may not be appropriate. Examples include extremes, cases
where the parameter is a boundary point of the support of the random variable, and
mixtures of distributions. Our future work will consist of stability detection for such
cases.10

The presence of temporal dependence is typically not problematic; our likelihood-
based schemes generalize easily to standard time series frameworks, but additional
mathematical technicalities cannot be avoided. In addition, cases where the
observations are not temporally ordered, or when there are multiple break points, need
suitable generalizations and mathematical treatment. Note that there is a relationship15

between the number of structural breaks in the distribution of a data sequence, the size
of such breaks, and the probabilities of true/false inference from hypothesis testing.
Establishing the limits of our proposed methodology along these lines is a future work
to accomplish.
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Table 1. Exponential Family CUSUM: Binomial, Exponential, Gamma and Multivariate Normal
distributions.

Type of Distribution Density Function EF-CUSUM based on

Binomial(n, p):
(n
k

)
px(1−p)n−x x log

(
p+δ
p

)
+ (N −x) log

(
1−p−δ

1−p

)
p→ p+δ

Poisson(λ): λxe−λ

λ! x log λ+δ
λ −δ

λ→ λ+δ

Gamma(α, β): 1
βαΓ(α)x

α−1e− x
β δ2

β(β+δ2)x+δ1 log x
β+δ2

−α log β+δ2

β − log Γ(α+δ1)
Γ(α)

α → α+δ1,β → β+δ2

Multivariate normal: 1

(2π)
p
2 |Σ|

1
2

exp{− 1
2 (x−µ)′Σ−1(x−µ)}

(
x−µ− 1

2δ
)′
Σ−1δ

Np (µ,Σ) → Np (µ+δ,Σ)
Σ is positive definite
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Table 2. CUSUM Statistic for Normal Distribution: the first row is more general with both mean
and variance change. The rest three rows are special cases of the first one.

Distribution CUSUM statistic

N
(
µ,σ2

1

)
→ N

(
µ+δ1,σ2

2

)
logσ1 +

1
2σ

−2
1 (xi −µ)2 − logσ2 − 1

2σ
−2
2 (xi −µ−δ1)2

N
(
µ,σ2

)
→ N

(
µ+δ,σ2

)
σ−2 (xi −µ− 1

2δ1

)
δ1 ∝

(
xi −µ− 1

2δ1

)
δ1

N
(
µ,σ2

1

)
→ N

(
µ,σ2

2

)
log

(
σ−1

2 σ1

)
+ 1

2σ
−2
1 σ−2

2

(
σ2

2 −σ2
1

)
(xi −µ)2

N(θ,θ2) → N
(
θ+δ1, (θ+δ1)2

)
log

(
(θ+δ1)−1θ

)
+ 1

2θ
−2 (xi −θ)2 − 1

2 (θ+δ1)−2 (xi −θ−δ1)2
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Table 3. Simulated binomial distribution changes: the three rows describe change from
binomial(5, 0.95) to binomial(5, 0.90), from binomial(15, 0.95) to binomial(15, 0.90) and from
binomial(5, 0.95) to binomial(5, 0.94) respectively. Here τ is fixed at 99 for illustration.

Method Mean Median Std. Deviation Max

EF-CUSUM 18.45902 15 14.36446 124
Gaussian-CUSUM 21.51974 16 17.84431 136

EF-CUSUM 9.049310 7 6.562318 68
Gaussian-CUSUM 10.678476 8 8.520224 65

EF-CUSUM 79.83406 59 71.60187 477
Gaussian-CUSUM 85.44692 62 79.26974 551
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Table 4. Simulated Poisson distribution changes: the four rows describe change from
Poisson(3) to Poisson(3.1), from Poisson(3) to Poisson(2.9), from Poisson(4) to Poisson(7) and
from Poisson(4) to Poisson(1) respectively. Here τ is fixed at 99 for illustration.

Method Mean Median Std. Deviation Max

EF-CUSUM 101.51383 74 95.09682 730
Gaussian-CUSUM 111.9772 80 106.36463 755

EF-CUSUM 93.05656 68 86.17123 546
Gaussian-CUSUM 98.06841 71 90.09476 634

EF-CUSUM 4.480411 4 2.815292 22
Gaussian-CUSUM 4.587708 4 3.149742 22

EF-CUSUM 2.858086 3 1.232671 11
Gaussian-CUSUM 3.085586 3 1.159972 11
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Table 5. Simulated Gamma distribution changes: the five rows describe change from
Gamma(1, 2) to Gamma(1.5, 2.5), from Gamma(1, 2) to Gamma(1.5, 2.5), from Gamma(3,
4) to Gamma(3.5, 3.5), from Gamma(3, 4) to Gamma(3.5, 4.5) and from Gamma(10, 10) to
Gamma(17, 18) respectively. Here τ is fixed at 99 for illustration.

Method Mean Median Std. Deviation Max

EF-CUSUM 9.923995 8 6.839445 53
Gaussian-CUSUM 15.64539 12 12.99359 165

EF-CUSUM 28.95583 25 19.30729 152
Gaussian-CUSUM 35.11858 29 27.01831 248

EF-CUSUM 70.26987 55 58.85137 437
Gaussian-CUSUM 75.67127 60 61.48744 417

EF-CUSUM 16.24952 13 11.87364 130
Gaussian-CUSUM 21.89900 17 18.15123 142

EF-CUSUM 1.063716 1 0.2497610 3
Gaussian-CUSUM 1.069783 1 0.2795194 3
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Table 6. Atlantic hurricane data from 1851 to 2008 are used to detect any mean change
in hurricane characteristics. Here c is the magnitude representing the number of standard
deviation from the mean. Result shows that the number of hurricane had a significant increase
around 1933–1936, and strength of the hurricane increased around 1923–1924.

Distribution c = 1
4 c = 1

2 c = 1

Poisson 1936 1933 1933
Bivariate Normal 1924 1923 1924
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Table 7. Atlantic hurricane data from 1951 to 2008 are used to detect any mean change
in hurricane characteristics. Here c is the magnitude representing the number of standard
deviation from the mean. Result shows that the number of hurricane had a significant increase
around the year of 2000, and strength of the hurricane has not changed.

Distribution c = 1
4 c = 1

2 c = 1

Poisson 2001 2001 2000
Bivariate Normal 2008 2008 2008
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Fig. 1. Performance Comparison: exponential Family CUSUM with Gaussian-CUSUM.
Dotdash, dashed and solid line stand for mean, median and standard deviation. The top
panel describes run length comparison from Binomial(15, 0.95) to Binomial(15, 0.90), the
middle panel describes run length comparison from Poisson(3) to Poisson(3.1), the bottom
panel describes run length comparison from Gamma(1, 2) to Gamma(1.5, 1.5). Due to length
limitation of the graphs, we here do not include the MAX line.
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Fig. 2. The three panels describes time series plots for the number of hurricanes, the maximum sustained winds and the maximum central
pressure across hurricanes from year 1851 to 2008.
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